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Abstract
Quantum confinement shifts quantum phase transitions like theλ-point of liquid
helium. This effect is calculated here for ideal Bose–Einstein condensates
(BECs) using thermodynamic mapping (TM). TM is a procedure to obtain
low temperature behaviour from high temperature information via elementary
transformations. We report here a series of TM relations for thermodynamic
quantities and the resulting transition properties for ideal BECs.

1. Introduction

Two of the most exciting lines of current research are studies of Bose–Einstein condensation
(BEC) of dilute atomic gases confined in magnetic traps [1–3] and studies of nanostructures
with quantum states controlled by confinement to wells small enough to determine and even
tune allowed energies. Here we study the related problem of an ideal BEC in confined geometry
and develop a technique for attacking a particular subset of the above problems.

While liquid 4He is not a non-interacting Bose gas, experiments in which 4He is confined in
tiny pores, as in porous glasses, e.g. Vycor, have shown interesting changes in the λ transition
due to quantum confinement [4]. For example, the λ-point is shifted to higher temperatures,
and the transition temperature, Tc, is independent of the particle density, unlike bulk 4He. This
work has stimulated the present study of a confined, non-interacting Bose gas [5].

The properties of a confined, ideal Bose gas are calculated by a new method in our work.
We use a thermodynamic mapping (TM) theorem [6] to relate low temperature properties to
high temperature properties.
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2. Confinement effects

In the approximation that normal 4He can be described as an ideal Bose gas, the energy of a
particle can be estimated from the Heisenberg uncertainty principle as follows:

ε = (�p)2

2m
∼ h2

2m

1

(�x)2
= h2

2m

(
N

V

)2/3

∼ kBTc. (1)

According to this estimate, it is clear that Tc is related to the particle density n̄ = N/V .
Confined 4He has very different properties from the bulk. Two striking effects are that Tc

is independent of n̄ and that Tc increases as confinement size decreases. These differences are
thought to be due to quantization effects, and that is consistent with the results reported in this
paper. The interval of energy levels, �ε, of an ideal system can be estimated as

�ε ∼ h2

2m

1

a2
, (2)

where a is the cavity dimension. For a ∼ 5 nm, and m the mass of a helium atom,�ε ∼ 0.1 K,
easily observable relative to the critical temperature, Tc ∼ 2 K. So the size of the cavity makes
quantum effects important and brings about significant changes in the system properties.

3. Thermodynamic mapping

It is an interesting dream to have TM to map the information at high temperature into that at
low temperature. However, we know this is extremely difficult, and in general cases there is no
unified method. But we can start from model studies and partly realize the TM. We think BEC
in confined geometry is a perfect model for realizing the TM dream, because it is nontrivial
and has a quantum phase transition at low temperature. So we start from the perfect gases in
confined geometry first to realize the TM dream in a theoretical problem with some physical
background and in a hot field.

TM is a method that maps low temperature properties from high temperature properties by
elementary transformations. This is done by a finite procedure in contrast to infinite procedures
like analytic continuation and the path from the zero-temperature Green function to the finite-
temperature Green function, for which accumulation of error can be very serious.

The following classes of problems can be considered as some examples of our defined
TM procedures.

(1) In classical statistical physics, if the interaction potential is a pth-order homogeneous
function of the differences of particle coordinates, then the configuration integrals satisfy
the following general relation:(

1

T1

)3N/p ∫ ∞

−∞
e−U/kB T1 dq =

(
1

T2

)3N/p ∫ ∞

−∞
e−U/kB T2 dq. (3)

(2) For the Ising model, Kramers and Wannier [7] proved a dual transformation relating
low and high temperature expansions. Three years later, Onsager [8] obtained the exact
solution for the 2D Ising model. He also proved such a dual transformation. Similar dual
transformations have only been found for finite level systems, i.e. spin systems.

For most practical systems the number of single-particle energy levels is infinite. We have
found an exact TM relation for confined systems. We first discuss the thin film case.
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Consider free electrons in a thin film of thickness t , with large lateral dimensions, so
t � L1 = L2 ≡ L. The energy levels are

εi = h̄2π2

2m

(
n2

1 + n2
2

L2
+

n2
3

t2

)
. (4)

Motions in the plane of the film are quasi-classical. Quantum effects may be important in the
direction normal to the film, due to the smallness of t .

For Boltzmann statistics, the free energy is

F = −kBT ln

[
1

N!

(
L2 mkBT

2π h̄2

∑
i

e−εi /kB T

)N]
. (5)

With εi as given in equation (4), the remaining summation in equation (5) is of the form

w(α) ≡
∞∑

n=0

e−αn2
. (6)

For convenience, rewrite this sum over both positive and negative integers, so

Z(α) ≡
∞∑

−∞
e−αn2 = 2w(α)− 1. (7)

The sum in equation (6) appears in both classical and quantum partition functions and
thermodynamic potentials, at least for non-interacting systems. So the TM relation we prove
below,

Z(α) =
√
π

α
Z

(
π2

α

)
, (8)

is applicable more generally than just to the thin film problem. In the remainder of this paper
we apply equation (8) to the problem of BEC in confined geometries. The TM relation could
also be used for a suitable nonideal system for which one can transform the sums over states
into the form of equation (6).

3.1. Proof of the TM relation equation (8)

We first prove

w

(
π2

α

)
=

√
α

π

[
w(α)− 1

2

]
+

1

2
. (9)

For real γ and β with β > 0,∫ ∞

−∞
e− 1

2 βξ
2

cos(γ ξ) dξ =
√

2π

β
e−γ 2/2β (β > 0). (10)

Letting γ = nx(n = 0,±1,±2, . . .) and β = 2 and summing both sides of equation (10), we
have

√
π

∞∑
n=0

e−(x/2)2 n2 =
∞∑

n=0

∫ ∞

−∞
e−ξ 2

cos(nxξ) dξ. (11)

The left-hand side of equation (11) is just
√
πw(x2/4) (see equation (6)). Now we use the

identity [9]
∞∑

n=1

cos(nx) = − 1
2 + π

∞∑
n=−∞

δ(x − 2πn), (12)
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to obtain for the right-hand side of equation (11)∫ ∞

−∞

[
1

2
+ π

∞∑
n=−∞

δ(x ξ − 2πn)

]
e−ξ 2

dξ =
√
π

2
− π

|x | +
2π

|x |w
[(

2π

x

2)]
, (13)

proving equation (9) and the following two equivalent relations:

w(α) =
√
π

α

[
w

(
π2

α

)
− 1

2

]
+

1

2
, (14)

Z(α) =
√
π

α
Z

(
π2

α

)
. (15)

Since α ∼ 1/T in statistical physics, the above equations realize a mapping relation
between the high temperature region and the low temperature region, divided at α = π . For
numerical calculations we can select either temperature region for the simplest calculation and
map the opposite region.

In the study of confined BEC, derivatives of Z(α) will be needed. Here are TM relations
for first, second and third derivatives.

(1) First derivative:

Z ′(α) = −
∞∑

n=−∞
n2e−αn2; (16)

Z ′(α) = − 1

2α

√
π

α
Z

(
π2

α

)
−

(
π

α

)5/2

Z ′
(
π2

α

)
. (17)

(2) Second derivative:

Z ′′(α) =
∞∑

n=−∞
n4e−αn2; (18)

Z ′′(α) = 3
√
π

4
α−5/2 Z

(
π2

α

)
+

3π5/2

α7/2
Z ′

(
π2

α

)
+

(
π

α

)9/2

Z ′′
(
π2

α

)
. (19)

(3) Third derivative:

Z ′′′(α) = −
∞∑

n=−∞
n6e−αn2 ; (20)

Z ′′′(α) = − 15
√
π

8α7/2
Z

(
π2

α

)
− 45π5/2

4α9/2
Z ′

(
π2

α

)

− 15π9/2

2α11/2
Z ′′

(
π2

α

)
−

(
π

α

)13/2

Z ′′′
(
π2

α

)
. (21)

4. Mapping relation for confined BEC

Noticing that the interaction in liquid 4He is a strong one and many theories studying even
weak interaction and homogeneous models are in not consistence, in order to emphasize the
effect of geometric confinement, we consider an ideal Bose gas, neglecting interactions. Just
as one of the referees said, ‘it is often useful to consider the interaction-free limit’.

We consider rectangular cavities of size L1 × L2 × L3. For numerical calculations we use
parameters suitable for a hypothetical non-interacting gas of 4He. In order to show the effect
of confinement on quantum states of the gas, we consider two common boundary conditions:
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(1) periodic boundary conditions, giving the wavefunctions and energies

ψ �p(�r) = 1√
V

ei �p·�r/h̄, pi = hni

Li
(i = 1, 2, 3), (22)

ε(�n) = h2

2m

3∑
i=1

(
ni

Li

)2

(ni = 0,±1,±2, . . .), (23)

(2) rigid boundary conditions, with wavefunctions and energies

ψn(�r) =
3∏

i=1

√
2

Li
sin

(
niπ

Li
xi

)
(ni = 1, 2, . . .), (24)

ε(�n) = h2

2m

3∑
i=1

(
ni

Li

)2

(ni = 1, 2, 3, . . .). (25)

Both boundary conditions can be applied to this problem. There are some differences: rigid
boundary conditions have no state with zero energy and the quantum numbers {ni } are positive
integers. These differences give slight differences in the results, but the analysis is identical,
and physical conclusions are the same.

The grand thermodynamic potential for an ideal Bose gas is

� = kBT g
∑

�n
ln

[
1 − e

µ−ε(�n)
kB T

]
, (26)

where kB is the Boltzmann constant, g is the spin degeneracy, T is the temperature and µ
is the chemical potential. Expanding the logarithm, ln(1 − x) = − ∑

xl/ l, (|x | < 1), the
thermodynamic potential can be expressed as

� = −kBT g
∑

�n

∑
l

1

l
el µ−ε(�n)

kB T

= −kBT g
∑

l

1

l
elµ/kB T

3∏
i=1

Z

(
lh2

2mkBT L2
i

)
. (27)

In the usual approach, the above sum would be transformed to an integral in the
thermodynamic limit (N → ∞, V → ∞, N/V → constant). But in a confined system
we cannot take the thermodynamic limit, which takes the energy intervals to zero and makes
the integral a good approximation for the sum. In fact, in a confined system the energy intervals
are of appreciable size, so the sums must be calculated as sums. This makes the problem more
difficult but also gives the new results seen in the experiments with confined 4He.

In order to calculate the sums we make use of the TM relation for Z(α), equation (15),
and the derivative relations, equations (16)–(21). Hence we write the relevant thermodynamic
relations in terms of the function Z . The pressure is

p = −�/V = kBT g

V

∑
l

1

l
elµ/kB T

3∏
i=1

Z

(
lh2

2mkBT L2
i

)
. (28)

The total particle number and particle density of the system are

N = −
(
∂�

∂µ

)
T,V

= g
∑

l

elµ/kB T
3∏

i=1

Z

(
lh2

2mkBT L2
i

)
; (29)

n̄ = N

V
= N∏3

i=1 Li

. (30)
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Equation (29) can be used to determine the chemical potential µ as a function of T and n̄,
expressed by µ(T, n̄), or abbreviated as µ(T ), one of the basic relations in our analysis.

To obtain the heat capacity of this system, we need the internal energy, Ē .

Ē = g
∑

�n

ε(�n)
e(ε(�n)−µ(T ))/kB T − 1

= kBT 2g
∞∑

l=1

1

l
elµ(T )/kB T ∂

∂T

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]
. (31)

So the heat capacity is

cV =
(
∂ Ē

∂T

)
V

= 2
Ē

T
+ kBT 2g

[
µ′(T )
kBT

− µ(T )

kBT 2

] ∞∑
l=1

elµ(T )/kB T ∂

∂T

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]

+ kBT 2g
∞∑

l=1

1

l
elµ(T )/kB T ∂2

∂T 2

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]
. (32)

The derivative of the heat capacity is needed to precisely define the λ transition. It is

c′
V =

(
∂cV

∂T

)
V

= −2
Ē

T 2
+ 2

cV

T

+ 2kBT g

[
µ′(T )
kBT

− µ(T )

kBT 2

] ∞∑
l=1

elµ(T )/kB T ∂

∂T

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]

+ kBT 2g
∂

∂T

[
µ′(T )
kBT

− µ(T )

kBT 2

] ∞∑
l=1

elµ(T )/kB T ∂

∂T

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]

+ kBT 2g

[
µ′(T )
kBT

− µ(T )

kBT 2

]2 ∞∑
l=1

lelµ(T )/kB T ∂

∂T

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]

+ 2kBT 2g

[
µ′(T )
kBT

− µ(T )

kBT 2

] ∞∑
l=1

elµ(T )/kB T ∂2

∂T 2

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]

+ 2kBT g
∞∑

l=1

1

l
elµ(T )/kB T ∂2

∂T 2

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]

+ kBT 2g
∞∑

l=1

elµ(T )/kB T ∂3

∂T 3

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]
. (33)

In order to calculate the quantities
µ′(T )
kBT

− µ(T )

kBT 2
and

∂

∂T

[
µ′(T )
kBT

− µ(T )

kBT 2

]
(34)

needed for equations (32) and (33), while avoiding the numerical calculation of derivatives,
we use the invariance of the system particle density:

dn̄

dT
= 0. (35)

Then

V

g

dn̄

dT
=

[
µ′(T )
kBT

− µ(T )

kBT 2

] ∞∑
l=1

lelµ(T )/kB T
3∏

i=1

Z

(
lh2

2mkBT L2
i

)

+
∞∑

l=1

elµ(T )/kB T ∂

∂T

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]
, (36)
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and repeating this procedure,

d2n̄

dT 2
= 0, (37)

gives

V

g

d2n̄

dT 2
= ∂

∂T

[
µ′(T )
kBT

− µ(T )

kBT 2

] ∞∑
l=1

lelµ(T )/kB T
3∏

i=1

Z

(
lh2

2mkBT L2
i

)

+

[
µ′(T )
kBT

− µ(T )

kBT 2

]2 ∞∑
l=1

l2elµ(T )/kB T
3∏

i=1

Z

(
lh2

2mkBT L2
i

)

+ 2

[
µ′(T )
kBT

− µ(T )

kBT 2

] ∞∑
l=1

lelµ(T )/kB T ∂

∂T

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]

+
∞∑

l=1

elµ(T )/kB T ∂2

∂T 2

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]
. (38)

Finally, the entropy of the system can be expressed as

S = −
(
∂�

∂T

)
V,µ

= −�
T

− g
µ(T )

T

∞∑
l=1

elµ(T )/kB T
3∏

i=1

Z

(
lh2

2mkBT L2
i

)

+ kBT g
∞∑

l=1

1

l
elµ(T )/kB T ∂

∂T

[ 3∏
i=1

Z

(
lh2

2mkBT L2
i

)]
. (39)

With the aid of equations (15), (17), (19) and (21), all the mapping relations for the fundamental
thermodynamic functions are now available.

In order to guarantee the accuracies of the series calculation to be better than a fixed level,
e.g. 10−10, the numbers of terms are controlled automatically. For example, α = 10−4, in
order to have accuracy 10−10, in the direct calculation, the function Z(α) needs more than 320
terms. In our computer program, the calculation will be switched to the TM relation; it only
needs two terms to guarantee the same accuracy, 10−10.

5. Determination of the critical temperature

It is important to note that the range of the chemical potential is different for the two boundary
conditions: µ � 0 for periodic boundary conditions, while µ � ε0 for rigid boundary
conditions.

To obtain the chemical potential,µ(T ), it is necessary to evaluate and invert equation (29).
The results of this calculation are shown in figure 1, where it can be seen that the chemical
potential changes significantly in one temperature range, perhaps indicating a phase transition.
However, because this is a rather smooth function, a transition temperature cannot be obtained
from this numerical result.

In order to determine carefully the critical temperature of the system, we sought the
maximum in the heat capacity, as occurs at the λ point in the thermodynamic limit. We thus
identified Tc as the temperature where the derivative of the heat capacity goes to zero with
c′

V (T
−

c ) > 0 and c′
V (T

+
c ) < 0. The heat capacity is shown in figure 2, in which a λ-like

transition is apparent. But there is no cusp, as occurs in the thermodynamic limit. In figures 2
and 3, T 0

c denotes the transition temperature in the thermodynamic limit.
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1.0 1.1 1.2 1.3 1.4

-15

-10

-5

0

µ/
ε 0

T/T
0

Figure 1. Chemical potential versus temperature (typical for L a few nm in size). In this figure,
L1 = L2 = L3 = 10 nm, n̄ = 20 × 1023 m−3.
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V
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V
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T/T
C

0

20A

40A

60A

80A

Figure 2. Heat capacity of an ideal Bose gas as a function of temperature for cavity sizes 2–8 nm.

T 0
c = 2π h̄2

mkB

[
n̄

ζ( 3
2 )

]2/3

(40)

where m is the mass of the boson, and ζ(x) is the Riemann zeta function.
Having determined Tc by the sign change of the derivative of the heat capacity, we

calculated the relation between Tc and cavity size for cubic cavities of side L from 1 to 10 nm,
as shown in figure 3.
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0 20 40 60 80

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

T
c/T

c0

L (A)

Figure 3. Tc versus cavity size.

It is worth mentioning that in a finite system the temperature of the maximum of the
specific heat no longer coincides with other characteristic temperatures like the one for the
onset of superfluidity, because in our recent work [10] there are at least five different definitions
of the ‘transition’ temperatures for a finite system of dilute Bose gases. They are different, but
will approach only one Tc as the systems approach the thermodynamic limit.

For studies we should be very careful, especially for confined geometry cases. We have
not presented these here, but we may come back to this topic later.

Some interesting works have been done on the effects of finite size of dilute Bose gases
in traps, e.g. [11–13]. For comparison, one should notice the following characters.

(1) The Tc expansion is obtained under the condition h̄ω
kB T � 1.

(2) In harmonic traps, the dispersion relation (the energy-momentum relation) is linear, while
in our case, it is quadratic.

(3) The density is increasing with the total number of particles, but in our case, the density is
fixed.

So we can expect that the effects can be different.
The expressions and their mapping relations for the thermodynamic functions developed

above have already been used to obtain the energy, Ē , heat capacity, cV , derivative of the heat
capacity, c′

V , chemical potential, µ(T ), and its derivatives, µ′(T ) and µ′′(T ), as well as other
properties, such as the pressure, p, entropy, S, etc that could be developed using this approach.

The TM has also been applied to study the sharpness R for the specific heat peak. We set up
the width of the peak Td in advance for comparison, e.g. Td = 5 K, then R = cV (Tc+Td )+cV (Tc−Td )

2Td
.

In figure 4, it is shown that the peak becomes sharper and sharper as the L increases. Thus
just as one could expect, in the thermodynamic limit, the peak becomes a cusp.

TM is also useful in studies on pressure. As we noticed, equation (28) is only an average
expression of pressure. It is very interesting that for anisotropic cases the pressure becomes a
tensor. For example, its value in the principal axis x is px = − 1

LyLz
∂�
∂Lx ; in these cases, the

TM is still very useful.
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Figure 4. R versus cavity size.

6. Discussion

In this paper we have found and proven a TM relation that enables us to calculate the partition
function and thermodynamic quantities for a confined system by carrying out the summations
to high accuracy. Neither integral approximations to these sums nor approximate densities of
states are necessary. These two points are significant, because in BEC the low-lying states
are extremely important and the approximation of the density of states is very sensitive to the
properties of the BEC, especially the ground state. The thermodynamic quantities of interest
are all expressed in terms of Z(α) and the derivatives, Z ′(α), Z ′′(α), µ′(T ) and µ′′(T ) with
TM relations that are exact for this model, because on a computer the derivatives are difficult
to obtain with high accuracy. Therefore, all these thermodynamic quantities can be calculated
to high accuracy using the TM relations.

We emphasize that all the derivatives, including first and second derivatives of the chemical
potential (notice that µ(T ) is obtained by solving a functional equation), are carried out by
exact analytic operations to find equations that are evaluated by the TM process. So accuracy
is maintained even for derivatives.

The singularity of the λ-transition disappeared, due to the finite size of the system.
Nevertheless, the general characteristics of the transition in the bulk system remain. We find,
as expected, that the sharpness of the transition increases as the size of the system increases.

The relation between Tc and cavity size (L) shows that energy quantization in the confined
geometry is the main reason for the shift of Tc. Tc increases as L gets smaller because the
energy interval increases, requiring more thermal energy to create excitations from the ground
state. This calculation is also consistent with experimental results in confined geometries.

In addition to allowing the calculation of the thermodynamic properties for confined BECs,
the present work has illustrated the practical utility of TM, a general tool for statistical physics.
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